Optimal Transient Control and Effects of a Small Energy Storage for a Diesel-Electric Powertrain
نویسندگان
چکیده
Abstract: Optimal control of a diesel-electric powertrain in transient operation as well as effects of adding a small energy storage to assist in the transients is studied. Two different types of problems are solved, minimum fuel and minimum time, with and without an extra energy storage. In the optimization both the output power and engine speed are free variables. For this aim a 4-state mean value engine model is used together with a model for the generator losses as well as the losses of the energy storage. The considered transients are steps from idle to target power with different requirements on produced energy, used as a measure on the freedom in the optimization before the requested power has to be met. For minimum fuel transients the energy storage remains unused for all requested energies, for minimum time it does not. The minimum time solution is found to both minimize the response time of the powertrain and also provide good fuel economy. For larger requested energies with energy storage the response time is immediate, with an energy storage of only 10-20Wh.
منابع مشابه
Time and Fuel Optimal Power Response of a Diesel-Electric Powertrain
Optimal control policies for a diesel-electric powertrain in transient operation are studied. In order to fully utilize the extra degree of freedom available in a diesel-electric powertrain, compared to a conventional powertrain, the engine-speed is allowed to vary freely. The considered transients are steps from idle to target power. A non-linear four state-three input mean value engine model,...
متن کاملAn Optimal Control Benchmark: Transient Optimization of a Diesel-electric Powertrain
An optimal control benchmark is presented and discussed. The benchmark is optimal transient control of a nonlinear four state three control model of a diesel-electric powertrain and constructed in such a manner that it is available in several versions to be of interest for developers of optimal control tools at different levels of development. This includes with and without time as a parameter ...
متن کاملModeling for Optimal Control: a Validated Diesel-electric Powertrain Model
An optimal control ready model of a diesel-electric powertrain is developed, validated and provided to the research community. The aim of the model is to facilitate studies of the transient control of diesel-electric powertrains and also to provide a model for developers of optimization tools. The resulting model is a four state three control mean value engine model that captures the significan...
متن کاملOptimal Intelligent Control of Plug-in Fuel Cell Electric Vehicles in Smart Electric Grids
In this paper, Plug-in Fuel Cell Electric Vehicle (PFCEV) is considered with dual power sources including Fuel Cell (FC) and battery Energy Storage. In order to respond to a transient power demand, usually supercapacitor energy storage device is combined with fuel cell to create a hybrid system with high energy density of fuel cell and the high power density of battery. In order to simulate the...
متن کاملOptimal and real-time control potential of a diesel-electric powertrain
Real-time control strategies and their performance related to the optimal control trajectories for a diesel-electric powertrain in transient operation are studied. The considered transients are steps from idle to target power. A non-linear four state-three input mean value engine model, incorporating the important turbocharger dynamics, is used for this study. The strategies are implemented usi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013